384 research outputs found

    Public health and landfill sites

    Get PDF
    Landfill management is a complex discipline, requiring very high levels of organisation, and considerable investment. Until the early 1990’s most Irish landfill sites were not managed to modern standards. Illegal landfill sites are, of course, usually not managed at all. Landfills are very active. The traditional idea of ‘put it in the ground and forget about it’ is entirely misleading. There is a lot of chemical and biological activity underground. This produces complex changes in the chemistry of the landfill, and of the emissions from the site. The main emissions of concern are landfill gases and contaminated water (which is known as leachate). Both of these emissions have complex and changing chemical compositions, and both depend critically on what has been put into the landfill. The gases spread mainly through the atmosphere, but also through the soil, while the leachate (the water) spreads through surface waters and the local groundwater. Essentially all unmanaged landfills will discharge large volumes of leachate into the local groundwater. In sites where the waste accepted has been properly regulated, and where no hazardous wastes are present, there is a lot known about the likely composition of this leachate and there is some knowledge of its likely biological and health effects. This is not the case for poorly regulated sites, where the composition of the waste accepted is unknown. It is possible to monitor the emissions from landfills, and to reduce some of the adverse health and environmental effects of these. These emissions, and hence the possible health effects, depend greatly on the content of the landfill, and on the details of the local geology and landscape. There is insufficient evidence to demonstrate a clear link between cancers and exposure to landfill, however, it is noted that there may be an association with adverse birth outcomes such as low birth weight and birth defects. It should be noted, however, that modern landfills, run in strict accordance with standard operation procedures, would have much less impact on the health of residents living in proximity to the site

    Cubic Curves, Finite Geometry and Cryptography

    Full text link
    Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed. Such a curve has 9,3,1 or 0 points of inflexion, and cubic curves are classified accordingly. The group structure and the possible numbers of rational points are also surveyed. A possible strengthening of the security of elliptic curve cryptography is proposed using a `shared secret' related to the group law. Cubic curves are also used in a new way to construct sets of points having various combinatorial and geometric properties that are of particular interest in finite Desarguesian planes.Comment: This is a version of our article to appear in Acta Applicandae Mathematicae. In this version, we have corrected a sentence in the third paragraph. The final publication is available at springerlink.com at http://www.springerlink.com/content/xh85647871215644

    Harmonic analysis of the stability of reverse routing in channels

    No full text
    International audienceNormal downstream routing of a flood flow is a highly stable process for Froude numbers less than 1 and hence the results are reliable. In contrast, reverse routing in an upstream direction, which may be required for flow control, is potentially unstable. This paper reports the results of a study of the practical limits on channel lengths for reverse routing. Harmonic analysis is applied to the full non-linear solution of the St. Venant equations for three different wave patterns and two different wave periods, for a particular channel with a Froude number of 0.5. Reverse routing can be done for prismatic channels longer than 100 km. For long periods (>10 hours) the shape of the upstream hydrograph is recovered well. However, when the wave period is short (<1 hour), the high frequency components of the upstream hydrograph and, thus, its shape, are not recovered. These limits are influenced by the channel morphology and shape of the wave. Further work is needed to determine how these factors interact

    Root selection methods in flood analysis

    Get PDF
    International audienceIn the 1970s, de Laine developed a root-matching procedure for estimating unit hydrograph ordinates from estimates of the fast component of the total runoff from multiple storms. Later, Turner produced a root selection method which required only data from one storm event and was based on recognising a pattern typical of unit hydrograph roots. Both methods required direct runoff data, i.e. prior separation of the slow response. This paper introduces a further refinement, called root separation, which allows the estimation of both the unit hydrograph ordinates and the effective precipitation from the full discharge hydrograph. It is based on recognising and separating the quicker component of the response from the much slower components due to interflow and/or baseflow. The method analyses the z-transform roots of carefully selected segments of the full hydrograph. The root patterns of these separate segments tend to be dominated by either the fast response or the slow response. This paper shows how their respective time-scales can be distinguished with an accuracy sufficient for practical purposes. As an illustration, theoretical equations are derived for a conceptual rainfall-runoff system with the input split between fast and slow reservoirs in parallel. These are solved analytically to identify the reservoir constants and the input splitting parameter. The proposed method, called "root separation", avoids the subjective selection of rainfall roots in the Turner method as well as the subjective matching of roots in the original de Laine method. Keywords: unit hydrograph,identification methods, z-transform, polynomial roots, root separation, fast andslow response, Nash cascade</p

    Indexing floodplain effects for flood estimation

    Get PDF
    Combining flood estimation methodologies with hydraulic models to provide a detailed and spatially coherent representation of flood risk can be problematic. One potential difficulty is that of double-accounting the attenuating effect of floodplain storage. This occurs when effects are represented in both the flood frequency estimation of the flow and also in hydraulic modelling and can be particularly important in the context of the increasing desire to combine hydrological and hydraulic models in a manner that provides a detailed and spatially coherent representation of flood risk. This paper presents an empirically derived index that represents floodplain effects on flood magnitude. A HEC-RAS 1-D hydraulic model was used to generate downstream flow hydrographs in a generalised river reach for defined upstream hydrographs encompassing a range of flows and durations. Geometrical and resistance properties in the reach were systematically varied. Relative attenuations were determined by analysing differences in upstream and simulated downstream hydrographs. The index was derived by relating flood peak attenuations to the channel characteristics in each simulation in a multivariate regression analysis

    Intersections of Hyperconics in Projective Planes of Even Order

    Get PDF
    AbstractWe show how to lift the even intersection equivalence relation from the hyperovals of PG(2, 4) to an equivalence relation amongst sets of hyperconics in π=PG(2, F). Here, F is any finite or infinite field of characteristic two that contains a subfield of order 4, but does not contain a subfield of order 8. Moreover, we are able to determine the number of points that two hyperconics in π will have in common provided some projective subplane of order 4 intersects both of them in hexads

    Impact of health insurance expansions on nonelderly adults with hypertension.

    Get PDF
    Introduction Hypertension is a risk factor for cardiovascular disease (CVD), the leading cause of death in the United States. The treatment and control of hypertension is inadequate, especially among patients without health insurance coverage. The Affordable Care Act offered an opportunity to improve hypertension management by increasing the number of people covered by insurance. This study predicts the long-term effects of improved hypertension treatment rates due to insurance expansions on the prevalence and mortality rates of CVD of nonelderly Americans with hypertension. Methods We developed a state-transition model to simulate the lifetime health events of the population aged 25 to 64 years. We modeled the effects of insurance coverage expansions on the basis of published findings on the relationship between insurance coverage, use of antihypertensive medications, and CVD-related events and deaths. Results The model projected that currently anticipated health insurance expansions would lead to a 5.1% increase in treatment rate among hypertensive patients. Such an increase in treatment rate is estimated to lead to 111,000 fewer new coronary heart disease events, 63,000 fewer stroke events, and 95,000 fewer CVD-related deaths by 2050. The estimated benefits were slightly greater for men than for women and were greater among nonwhite populations. Conclusion Federal and state efforts to expand insurance coverage among nonelderly adults could yield significant health benefits in terms of CVD prevalence and mortality rates and narrow the racial/ethnic disparities in health outcomes for patients with hypertension
    corecore